Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Anal Biochem ; : 115526, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38621604

RESUMEN

The imperative for the point-of-care testing of methamphetamine and cocaine in drug abuse prevention necessitates innovative solutions. To address this need, we have introduced a multi-channel wearable sensor harnessing CRISPR/Cas12a system. A CRISPR/Cas12a based system, integrated with aptamers specific to methamphetamine and cocaine, has been engineered. These aptamers function as signal-mediated intermediaries, converting methamphetamine and cocaine into nucleic acid signals, subsequently generating single-stranded DNA to activate the Cas12 protein. Additionally, we have integrated a microfluidic system and magnetic separation technology into the CRISPR system, enabling rapid and precise detection of cocaine and methamphetamine. The proposed sensing platform demonstrated exceptional sensitivity, achieving a detection limit as low as 0.1 ng/mL. This sensor is expected to be used for on-site drug detection in the future.

2.
Mol Ther ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532630

RESUMEN

Base editing of hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematologic diseases. However, the feasibility of using adenine-base-edited HSPCs for treating X-linked severe combined immunodeficiency (SCID-X1), the influence of dose-response relationships on immune cell generation, and the potential risks have not been demonstrated in vivo. Here, a humanized SCID-X1 mouse model was established, and 86.67% ± 2.52% (n = 3) of mouse hematopoietic stem cell (HSC) pathogenic mutations were corrected, with no single-guide-RNA (sgRNA)-dependent off-target effects detected. Analysis of peripheral blood over 16 weeks post-transplantation in mice with different immunodeficiency backgrounds revealed efficient immune cell generation following transplantation of different amounts of modified HSCs. Therefore, a large-scale infusion of gene-corrected HSCs within a safe range can achieve rapid, stable, and durable immune cell regeneration. Tissue-section staining further demonstrated the restoration of immune organ tissue structures, with no tumor formation in multiple organs. Collectively, these data suggest that base-edited HSCs are a potential therapeutic approach for SCID-X1 and that a threshold infusion dose of gene-corrected cells is required for immune cell regeneration. This study lays a theoretical foundation for the clinical application of base-edited HSCs in treating SCID-X1.

3.
Int J Biol Macromol ; 262(Pt 2): 130095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346621

RESUMEN

In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.


Asunto(s)
Cordyceps , Estructuras Metalorgánicas , Frutas , Escherichia coli , Staphylococcus aureus , Embalaje de Alimentos , Antibacterianos
4.
Nat Commun ; 15(1): 825, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280845

RESUMEN

Prime editing allows precise installation of any single base substitution and small insertions and deletions without requiring homologous recombination or double-strand DNA breaks in eukaryotic cells. However, the applications in bacteria are hindered and the underlying mechanisms that impede efficient prime editing remain enigmatic. Here, we report the determination of vital cellular factors that affect prime editing in bacteria. Genetic screening of 129 Escherichia coli transposon mutants identified sbcB, a 3'→5' DNA exonuclease, as a key genetic determinant in impeding prime editing in E. coli, combinational deletions of which with two additional 3'→5' DNA exonucleases, xseA and exoX, drastically enhanced the prime editing efficiency by up to 100-fold. Efficient prime editing in wild-type E. coli can be achieved by simultaneously inhibiting the DNA exonucleases via CRISPRi. Our results pave the way for versatile applications of prime editing for bacterial genome engineering.


Asunto(s)
Proteínas de Escherichia coli , Exodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Roturas del ADN de Doble Cadena , Sistemas CRISPR-Cas/genética
6.
Cancer Cell ; 42(1): 135-156.e17, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38101410

RESUMEN

Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting from disruptions to neoantigen presentation. We identify somatic copy number alterations as highly selected events driving metastasis. Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a pro-metastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E:CD94-NKG2A checkpoint axis. Collectively, our results provide a multi-dimensional dissection of the complex evolutionary process of metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Linfocitos T CD8-positivos/patología , Multiómica , Mutación , Microambiente Tumoral/genética
7.
Biosens Bioelectron ; 247: 115925, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134625

RESUMEN

The detection of low-abundance mutation genes of the epidermal growth factor receptor (EGFR) exon 21 (EGFR L858R) plays a crucial role in the diagnosis of non-small cell lung cancer (NSCLC), as it enables early cancer detection and facilitates the development of treatment strategies. A detection platform was developed by combining the MscI restriction enzyme with the recombinase-aided isothermal amplification (RAA) technique (MRE-RAA). During the RAA process, "TGG^CCA" site of the wild-type genes was cleaved by the MscI restriction enzyme, while only the low-abundance mutation genes underwent amplification. Notably, when the RAA product was combined with CRISPR-Cas system, the sensitivity of detecting the EGFR L858R mutation increased by up to 1000-fold for addition of the MscI restriction enzyme. This achievement marked the first instance of attaining an analytical sensitivity of 0.001%. Furthermore, a disk-shaped microfluidic chip was developed to automate pretreatment while concurrently analyzing four blood samples. The microfluidic features of the chip include DNA extraction, MRE-RAA, and CRISPR-based detection. The fluorescence signal is employed for detection in the microfluidic chip, which is visible to the naked eye upon exposure to blue light irradiation. Furthermore, this platform has the capability to facilitate early diagnosis for various types of cancer by enabling high-sensitivity detection of low-abundance mutation genes.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Sensibilidad y Especificidad , Microfluídica , Técnicas de Amplificación de Ácido Nucleico , Recombinasas/genética , Recombinasas/metabolismo , Receptores ErbB/genética , Mutación , Hidrolasas/genética
8.
Nat Commun ; 14(1): 7434, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973874

RESUMEN

Inverse Protein Folding (IPF) is an important task of protein design, which aims to design sequences compatible with a given backbone structure. Despite the prosperous development of algorithms for this task, existing methods tend to rely on noisy predicted residues located in the local neighborhood when generating sequences. To address this limitation, we propose an entropy-based residue selection method to remove noise in the input residue context. Additionally, we introduce ProRefiner, a memory-efficient global graph attention model to fully utilize the denoised context. Our proposed method achieves state-of-the-art performance on multiple sequence design benchmarks in different design settings. Furthermore, we demonstrate the applicability of ProRefiner in redesigning Transposon-associated transposase B, where six out of the 20 variants we propose exhibit improved gene editing activity.


Asunto(s)
Algoritmos , Proteínas , Entropía , Proteínas/genética , Proteínas/química , Pliegue de Proteína
9.
Biodes Res ; 5: 0006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849457

RESUMEN

Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy. Combining de novo protein design and biosynthesis techniques, herein, we designed a biomimetic polypeptide self-assembled nano-immunomodulator to trigger the activation of a specific macrophage phenotype. It was intended to be made up of (​GGS​GGP​GGG​PAS​AAA​NSA​SRA​TSN​SP)n, the RGD motif from collagen, and the IKVAV motif from laminin. The combination of these domains allows the biomimetic polypeptide to assemble into extracellular matrix-like nanofibrils, creating an extracellular matrix-like milieu for macrophages. Furthermore, changing the concentration further provides a facile route to fine-tune macrophage polarization, which enhances antitumor immune responses by precisely resetting tumor-associated macrophage immune responses into an M1-like phenotype, which is generally considered to be tumor-killing macrophages, primarily antitumor, and immune-promoting. Unlike metal or synthetic polymer-based nanoparticles, this polypeptide-based nanomaterial exhibits excellent biocompatibility, high efficacy, and precise tunability in immunomodulatory effectiveness. These encouraging findings motivate us to continue our research into cancer immunotherapy applications in the future.

10.
Exp Hematol Oncol ; 12(1): 88, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803455

RESUMEN

CAR T cell therapy has been successfully used in the treatment of hematological malignancies, and the strategy that deletion of inhibitory receptor on the CAR T cell surface, such as PD-1, greatly enhance the antitumor effects. Here, we describe a one-step electroporation for the co-transfection of Cas9:sgRNA and CAR plasmids on primary T cells to demonstrate the effect of SHP-1 deletion in CAR T cells. By using PiggyBac Transposase system, we can achieve more than 90% of T cells express CAR gene and nearly 60% SHP-1 knockout efficiency in T cells. We show that knockout of SHP-1 in CD133 CAR T cells resulted in significantly improve the cytolysis effect on CD133 positive glioma cell lines. We further demonstrate that the enhanced antitumor efficacy of SHP-1 deletion is due to the increased release of TNF-α, IL-2 and IFN-γ in vitro. Finally, we evaluated the biosafety of Cas9 genome editing and did not find any insertions of Cas9 and obvious editing in off-target sites in CAR T cells. These data provide an approach for achieving both intracellular inhibitory molecule, SHP-1 deletion and CD133 CAR gene over-expression in human T cells. And SHP-1 could be a new potential target for adoptive CAR T cells immunotherapy.

11.
Cell Rep Methods ; 3(8): 100561, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671012

RESUMEN

In a recent issue of Med, Tian et al.1 present AID-seq, an approach that enables massively parallel identification of off-targets for different CRISPR nucleases in vitro. By using a pooled strategy to simultaneously identify the on-/off-targets of multiple gRNAs, the authors could screen the most efficient and safe gRNA candidates.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas
12.
Nat Biomed Eng ; 7(9): 1129-1141, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37696984

RESUMEN

The infusion of chimaeric antigen receptor (CAR) T cells can trigger the release of life-threatening supraphysiological levels of pro-inflammatory cytokines. However, uncertainty regarding the timing and severity of such cytokine release syndrome (CRS) demands careful monitoring of the conditions required for the administration of neutralizing antibodies. Here we show that a temperature-sensitive hydrogel conjugated with antibodies for the pro-inflammatory cytokine interleukin-6 (IL-6) and subcutaneously injected before the infusion of CAR-T cells substantially reduces the levels of IL-6 during CRS while maintaining the therapy's antitumour efficacy. In immunodeficient mice and in mice with transplanted human haematopoietic stem cells, the subcutaneous IL-6-adsorbing hydrogel largely suppressed CAR-T-cell-induced CRS, substantially improving the animals' survival and alleviating their levels of fever, hypotension and weight loss relative to the administration of free IL-6 antibodies. The implanted hydrogel, which can be easily removed with a syringe following a cooling-induced gel-sol transition, may allow for a shift in the management of CRS, from monitoring to prevention.


Asunto(s)
Interleucina-6 , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Hidrogeles , Síndrome de Liberación de Citoquinas , Citocinas , Anticuerpos Neutralizantes , Tratamiento Basado en Trasplante de Células y Tejidos
13.
Appl Microbiol Biotechnol ; 107(20): 6287-6297, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37626187

RESUMEN

Persistent infection with human papillomavirus (HPV) is the leading cause of cervical cancer, and early diagnosis is crucial for clinical management. However, the easy and rapid on-site diagnostic for HPV genotyping remains challenging. Here, we develop a Cas12a-based fluorescent microfluidic detection system for diagnosing six HPV subtypes (HPV6, HPV11, HPV16, HPV18, HPV31, and HPV33). A panel of crRNAs and recombinase polymerase amplification (RPA) primers targeting the HPV L1 gene was screened for sensitive and specific detection. Furthermore, a one-pot RPA reaction was developed to amplify the six HPV subtypes without cross-reactivity. For on-site detection, we integrated the RPA-Cas12a detection into a microfluidic device, enabling the detection of processed clinical samples within 35 minutes. The assay was validated using 112 clinical swab samples and obtained consistent results with the qPCR assay, with a concordance rate of 99.1%. Overall, our diagnostic method offers a rapid, sensitive, and easy-to-use on-site assay for detecting HPV genotypes and holds promise for improving cervical cancer screening and prevention. KEY POINTS: • The Cas12a-based fluorescent microfluidic detection system for the diagnosis of six HPV subtypes. • A one-pot RPA reaction for amplifying the six HPV subtypes without cross-reactivity. • The RPA-Cas12a-microfluidic system provides results within 35 minutes for on-site detection.

14.
Cell Death Dis ; 14(8): 543, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612280

RESUMEN

Haploinsufficient mutation in arginine and glutamine-rich protein 1 (Arglu1), a newly identified pre-mRNA splicing regulator, may be linked to neural developmental disorders associated with mental retardation and epilepsy in human patients, but the underlying causes remain elusive. Here we show that ablation of Arglu1 promotes radial glial cell (RG) detachment from the ventricular zone (VZ), leading to ectopic localized RGs in the mouse embryonic cortex. Although they remain proliferative, ectopic progenitors, as well as progenitors in the VZ, exhibit prolonged mitosis, p53 upregulation and cell apoptosis, leading to reduced neuron production, neuronal loss and microcephaly. RNA seq analysis reveals widespread changes in alternative splicing in the mutant mouse embryonic cortex, preferentially affecting genes involved in neuronal functions. Mdm2 and Mdm4 are found to be alternatively spliced at the exon 3 and exon 5 respectively, leading to absence of the p53-binding domain and nonsense-mediated mRNA decay (NMD) and thus relieve inhibition of p53. Removal of p53 largely rescues the microcephaly caused by deletion of Arglu1. Our findings provide mechanistic insights into cortical malformations of human patients with Arglu1 haploinsufficient mutation.


Asunto(s)
Empalme Alternativo , Microcefalia , Humanos , Animales , Ratones , Empalme Alternativo/genética , Microcefalia/genética , Proteína p53 Supresora de Tumor/genética , Empalme del ARN , Apoptosis/genética , Péptidos y Proteínas de Señalización Intracelular
15.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37485875

RESUMEN

Chemotherapy-related cognitive impairment (CRCI) or "chemo brain" is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Animales , Ratones , Hipocampo/metabolismo , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Quinasas , Tirosina
16.
J Mol Diagn ; 25(8): 540-554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37517824

RESUMEN

Leber hereditary optic neuropathy (LHON) is the most common maternally inherited mitochondrial disease, with >90% of cases harboring one of three point variants (m.3460G>A, m.11778G>A, and m.14484T>C). Rapid and sensitive diagnosis of LHON variants is urgently needed for early diagnosis and timely treatment after onset, which is currently limited. Herein, we adapted the Cas12a-based DNA detection platform for LHON mitochondrial variant diagnosis. Single-strand guide CRISPR RNAs and enzymatic recombinase amplification primers were first screened, the CRISPR/Cas12a system was then optimized with restriction enzymes, and finally compared with Sanger sequencing and next-generation sequencing (NGS) in multicenter clinical samples. This approach can be completed within 30 minutes using only one drop of blood and could reach a sensitivity of 1% of heteroplasmy. Among the 182 multicenter clinical samples, the CRISPR/Cas12a detection system showed high consistency with Sanger sequencing and NGS in both specificity and sensitivity. Notably, a sample harboring a de novo 3.78% m.11778G>A variant detected by NGS, but not by Sanger sequencing, was successfully confirmed using the CRISPR/Cas12a assay, which proved the effectiveness of our method. Overall, our CRISPR/Cas12a detection system provides an alternative for rapid, convenient, and sensitive detection of LHON variants, exhibiting great potential for clinical practice.


Asunto(s)
Sistemas CRISPR-Cas , Atrofia Óptica Hereditaria de Leber , Humanos , Sistemas CRISPR-Cas/genética , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Mutación
17.
Research (Wash D C) ; 6: 0175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333972

RESUMEN

Interorganelle contacts and communications are increasingly recognized to play a vital role in cellular function and homeostasis. In particular, the mitochondria-endoplasmic reticulum (ER) membrane contact site (MAM) is known to regulate ion and lipid transfer, as well as signaling and organelle dynamics. However, the regulatory mechanisms of MAM formation and their function are still elusive. Here, we identify mitochondrial Lon protease (LonP1), a highly conserved mitochondrial matrix protease, as a new MAM tethering protein. The removal of LonP1 substantially reduces MAM formation and causes mitochondrial fragmentation. Furthermore, deletion of LonP1 in the cardiomyocytes of mouse heart impairs MAM integrity and mitochondrial fusion and activates the unfolded protein response within the ER (UPRER). Consequently, cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming and pathological heart remodeling. These findings demonstrate that LonP1 is a novel MAM-localized protein orchestrating MAM integrity, mitochondrial dynamics, and UPRER, offering exciting new insights into the potential therapeutic strategy for heart failure.

18.
Cancer Lett ; 567: 216283, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37331584

RESUMEN

Protein tyrosine phosphatase receptor-type O (PTPRO) is a membrane-bound tyrosine phosphatase. Notably, epigenetically silenced PTPRO due to promoter hypermethylation is frequently linked to malignancies. In this study, we used cellular and animal models, and patient samples to demonstrate that PTPRO can suppress the metastasis of esophageal squamous cell carcinoma (ESCC). Mechanistically, PTPRO can inhibit MET-mediated metastasis by dephosphorylating Y1234/1235 in the kinase activation loop of MET. Patients with PTPROlow/p-METhigh had significantly poor prognosis, suggesting that PTPROlow/p-METhigh can serve as an independent prognostic factor for patients with ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Metástasis Linfática , Línea Celular Tumoral , Monoéster Fosfórico Hidrolasas , Pronóstico
19.
J Biol Chem ; 299(8): 104942, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343700

RESUMEN

The rapid advances in genome editing technologies have revolutionized the study of gene functions in cell or animal models. The recent generation of double-stranded DNA cleavage-independent base editors has been suitably adapted for interrogation of protein-coding genes on the basis of introducing premature stop codons or disabling the start codons. However, such versions of stop/start codon-oriented genetic tools still present limitations on their versatility, base-level precision, and target specificity. Here, we exploit a newly developed prime editor (PE) that differs from base editors by its adoption of a reverse transcriptase activity, which enables incorporation of various types of precise edits templated by a specialized prime editing guide RNA. Based on such a versatile platform, we established a prime editing-empowered method (PE-STOP) for installation of nonsense substitutions, providing a complementary approach to the present gene-targeting tools. PE-STOP is bioinformatically predicted to feature substantially expanded coverage in the genome space. In practice, PE-STOP introduces stop codons with good efficiencies in human embryonic kidney 293T and N2a cells (with medians of 29% [ten sites] and 25% [four sites] editing efficiencies, respectively), while exhibiting minimal off-target effects and high on-target precision. Furthermore, given the fact that PE installs prime editing guide RNA-templated mutations, we introduce a unique strategy for precise genetic rescue of PE-STOP-dependent nonsense mutation via the same PE platform. Altogether, the present work demonstrates a versatile and specific tool for gene inactivation and for functional interrogation of nonsense mutations.


Asunto(s)
Codón sin Sentido , Edición Génica , Animales , Humanos , Codón sin Sentido/genética , Codón de Terminación/genética , Edición Génica/métodos , Silenciador del Gen , Mutación , Línea Celular
20.
Mol Cell ; 83(10): 1710-1724.e7, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37141888

RESUMEN

Bacterial double-stranded DNA (dsDNA) cytosine deaminase DddAtox-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddAtox) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddAtox, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddAtox- or riDddAtox-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.5- and 1.7-fold, respectively. We also used riDddAtox-based and Rta-assisted mitoCBE to efficiently stimulate disease-associated mtDNA mutations in cultured cells and in mouse embryos with conversion frequencies of up to 58% at non-TC targets.


Asunto(s)
Edición Génica , Transactivadores , Ratones , Animales , Transactivadores/metabolismo , Citosina , Mutación , ADN Mitocondrial/genética , Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...